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I. INTRODUCTION

It has been known for over 40 years that glass targets are unusually
effective in stopping shaped-charge jets. Studies of this effectiveness
were made during and after World War II.1 These studies established the
principles of defense against shapad-charee jets using glass. Neverthe-
less, little is known about the physics aud chemistry associated with the
penetration process in glass.

This report describes some experiments made to measure dynamic
stresses in glass in the vicinity of a penetrating jet. Strain-compensated
stress gages and simultaneous high-speed framing camera photographs were
used for this purpose. These experiments are part of a larger effort to
understand the fundamentals of the jet penetration process in glass and
glass-like materials.2 The overall work also includes the use of flash
radiography to observe the on-going pen.ftration, and target recovery to
observe the material after peneti-ation.

II. EXPERIMENTAL PROCEDURE

The shaped-charge jets used in these experiments were obtained using a
35 mm diameter conical copper liner with a wall thickness of 1.57 mm and a
cone angle of 45 degrees. The explosive used was Composition B. Figure 1
is a drawing of this unconfined shaped charge. When fired at a standofy. of
two cone diameters the jet penetrated four cone diameters in stacked 25 mm
thick rolled steel plates (Rockwell hardness B81). The jet tip velocity
was 6.8 km/s.

IThe targets consisted of stacked layers of float glass (Density = 2500
kg/m). The glass layers were either 25.4 mm or 19.1 mm thick and were
approximately 150 mm squarc. They were stacked either perpendicular to the
jet path or parallel to the jet path. The layers were bonded with epoxy
cement (Hysol Epoxy-Patch 608 (*)) while clamped in a press. Various cover
plates were used. The cover plates were either rolled homogeneous armor
(RHA) or polymethylmethacralate (PMMA), or a combination of the two of dif-
ferent thicknesses. Table 1 gives details of the various thicknesses,
orientations and materi hs used in each experiment. Figures 2 and 3 show
drawings of typical target configurations. The shaped charges were fired
at a standoff of two cone diameters above the cover plates.

Strain-compensated stress gages (Dynasen Mod. Mn/Cn 4-50-EK (**)) were
used to measure stresses during jet penetration. These gages consist of
two separate interlaced foil grids encased in a polyimide plastic film.
One of the grids is made of manganin and is used ' measure stress. The
other is made of constantan and is used to measure strain. Both grids are
5 mm square and the gages are 0.127 mm thick. The measured strain is used
to correct the stress measurements. More details on how the data is
reduced is given in the next section.

*Hysol Division, The Dexter Corporation, Olean, NY 14760
*0Dynasen Inc., Goleta, CA 93017
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Figure 1. Shaped Charge Used in Penetration Experiments.
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Figure 2. Perpendicular-Layer Glass Target.
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Figure 3. Parallel-Layer Glass Target.
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The gages were bonded between the layers of glass in shallow slots

approximately 0.38 mm deep etched in the glass with hydrofluoric acid. The

gages were placed between two layers of polytetrafluoroethylene each
0.127 mm thick to protect them from the fracturing glass. The gages and
the plastic layers were bonded in the slots with the same epoxy cement used
for bonding the glass layers. Figure 4 shows a drawing of the usual gage
placement. The gage leads which were 95 mm long protruded from the sides
of the layered targets. When the glass layers were parallel to the jet
path the gage grinus were also parallel. Likewise, when the layers were
perpendicular the grids were perpendicular to the jet path. Table 1 also
includes particulars on gage placement in each experiment. Test No. 1) aid
Test No. 16 were run without slots in the glass and the offset dpaces
caused by the thickcness of the gage were filled with pl.3tic film and epoxy
cement. This was done to see if the slots affected the gage signals.

Gupta and Gupta3 have reported such disturbance in very strong materials.

The gages were attached to 93 ohm RG-62u coaxial cables which were

connected to bridge circuits similar to those used by Rapacki.4  The cir-
cuits were modified to be used with the 50 ohm Dynasen gages instead of the

120 ohm gages used by Rapacki. The signals were recorded on digital oscil-
loscopes (Nicolet 2090 with 204A plug-in (*)). The oscilloscopes were
triggered by a circuit using a make-switch made of brass foils separated by
a thin plastic film which was bonded to the front surface of the target.
The impinging jet closed the switch gap circuit and triggered a delay gen-
erator that subsequently triggered the oscilloscopes.

For some of the experiiusnts simultaneous framing camera photographs
were made during jet penetration. A Cordin Model 10-010 camera was used
(**). The glass targets were back-lit with an exploding tungsten wire
placed near the focus of a pla.stic Fresnel lens. When the glass layers

were parallel to the jet path, a clear optical path was perpendicular to
the layers. When the layers were perpendicular to thd jet path, cover
plates of.clear PMMA 6.35 mm thick were bonded to opposite target sides
with epoxy cement to make a clear optical path for the photographs. Fig-
ures 2 and 3 show the optical setup.

III. RESULTS

The data from the two signals obtained from each gage were reduced in
a manner similar to that used by Rapacki.4 That is, calibrations were made
of each circuit with known dummy gages inserted in the lines instead of the
actual gage. Signals from known changes in resistance were then used to
determine the circuit constants. These constants along with the known
bridge and cable resistances were used to calculate the resistance of each
grid at each simultaneous time step of the signals.

To calculate the stress in the glass for each time step it was assumed
that the resistance of the constantan grid was not affected by the stress

*Nicolet Oscilloscope Division, Madison, WI 53711
*#The Cordin Company, Salt Lake City, UT
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field that lurrounded both it and the manganin grid. It was further

assumed that the strain of the manganin grid was the same as in the con-
stantan grid. Finally it was assumed that the stress in the gla3s was the
same as that in the manganin.

The strain for each time step was calculated using the equation

ST = -1 + (RC/ROC) C.5 .
Here

ST = strain in the constantan grid
RC = resistance of the constantan grid
ROC z the initial resistance of the constantan grid.

To calculate the stress, the resistance change associated with the
strain in the manganin must first be subtracted from the total resistance
cnange. In order to do this the strain gage factor for the manganin grid
was determined from a separate static experiment. A strain-compensated
st.e7zs gage was mounted on an aluminum alloy plate along with conventional
strain gages (Micromeasurements EP-08-062TT-120 (*)). This plate was
pulled in an universal testing machine. The data showed that the manganin
grid had a gage factor of 0.7 to a strain of 0.5%. Above 0.5% strain the
manganin deformed plastically and the gage factor became the same as for
the constantan grid, That is, 2+ST.5 Figure 5 is a plot of the measured
apparent gage factor along with a curve calculated using a gage factor of

0.7 for the elastic strain and unloading, and a factor of 2+ST for the
plastic strain. The ap)parent gage factor G.F., is defined as

G.F. DRG/(ROG x ST).
Where

DRG = the change in gage resistance,
and

*ROG = the initial gage resistance.

The resistance change in the manganin due to the strain was therefore
calculated by using the following equations.

For -0.005 < ST < 0.005
DRMS 0.7 x ST x ROM.

For ST > 0.005
DRMS = (2+ST-0.005) x (ST-0.005) x (1+0.7x0.005) x ROM +

(0.7x0.005) x ROM
= (1.995+ST) x (ST-O.005) x 1.0035 x ROM + 0.0035 x ROM

For ST < -.005

DRMS = (2.005+ST) x (ST+0.005) x 0.9965 x 4OM - 0.0035 x ROM

Here
DRMS the change in resistance of the manganin grid due to strain
ROM the initial resistance of the manganin grid.

*Measurements Group, Raleigh, NC 27611
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The stress in the manganin was then calculated using a cubic fit to
the data of Charest.6  This equation is

S = 53.19 x (DRM/RO) - 159.91 x (DRM/RO)2 + 493.16 x (DRM/RO)3,

Where
S = stress in the manganin (gigapascals)
DRM = DRMT - DRMS
RO= ROM + DRMS

and
DRMT = the total resistance change in the manganin.

Figures 6 to 13 show results obtained from this analysis. Compressive
stress is positive. Figures 14 and 15 show a series of framing camera pho-
tographs. In the photographs of Figure 14 the glass layers are parallel to
the jet path. There are 2 microseconds between frames. Figure 15 shows
the results when the layers are perpendicular to the path. There are 1.33
microseconds between frames.

IV. DISCUSSION

The stress measurements reported here were obtained under oarticularly
adverse physical conditions. It was learned in preliminary experiments
that the foil gages and their leads had to be protected from a hostile

environment which included fracturing glass. The layers of polytetra-
flouroethylene, used for this protection, restricted the mechanical

response of the gages especially to the initial sharply rising shock waves.
The response was further restricted by the electronic bandwidth of the
recording equipment so that submicrosecond changes in either stress or
strain could not be tracked.

The gages were approximately 19 mm to the side of the jet path for
* perpendicllar shots and 12.7 mm from the path for parallel shots. As can

be seen tne stresses measured did not exceed approximately 0.3 gigapascals
until the gages were on the verge of destruction from the fracturing glass.
The strain in most of the shots did not contribute significantly to the
stress compensation until 3 to 4 microseconds after the start of the stress
signals. The usual signal showed two compressive peaks followed by either
tension or compression.

Although unslotted gages did not show these distinct peaks the meas-
ured stress levels were approximately the same as for slotted gages (see
Figures 12 and 13). In most cases the gages started to fail before or near
jet arrival, that is, 15 to 20 microseconds after the shock arrived. For
two shots the gages survived for longer times. No extremely large stresses
were measured on these shots (see Figures 8 and 10). The parallel gages
showed lower initial stress levels than the perpendicular gages (see Fig-
ures 6 and 8). This could result from a nonhydrodynamic stress field or
from an off center' jet path. These shots also had RHA cover plates which
wipe off the fastest part of the jet.

The framing camera photographs clearly show that fracture occurred
around the gages before the arrival of the penetrating jet. This was
caused by interaction with the leading shock wave which was formed when the

16
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jet impacted the cover plate. There was a delay of about 3 microseconds
after shock arrival beforp cracking was seen at the gage. Data from the
film in Figure 15 was used to calculate the shock velocity, the initial
penetration velocity, and the glass fracture velocity. The measured values
are:

Penetration Velocity = 2.57 km/s

Fracture Velocity = 2.10 km/s

Shock Velocity = 5.90 km/s.

The wave profiles determined with the stress gages were difficult to
interpret when compared to the high speed framing camera photographs. For
instance, at least two shock waves are evident in the photographs of the
glass in Test No. 8 where the cover plate consisted of 25.4 mm of RHA and
25.4 mm of PMMA. The first wave was caused by the original jet impact at
the RHA surface and the second (probably) by the impact of the jet reaching
the PMMA-glass interface. In the steel, the shock velocity was higher than
the penetration velocity, whereas, in the PMMA the opposite was true. The
jet reached the glass interface approximately 2.2 microseconds after the
shock and accounts for the photographic results. The stress profile also
showed a two wave structure but the spacing was 7 microseconds. A cover
plate of PMMA 50,8 mm thick was used in Test no. 10. The photographs show
a double wave structure hut in this case the second shock is much weaker
than for Test No. 8. Compare Figures 14 and 15. In the PMMA, the penetra-
tion velocity was higher than the shock velocity, and the jet tip arrived
at the PMMA-glass interface before the shock. The jet impact produced a
shock in the glass after which the following shock in the PMMA entered the
glass and caused the double wave structure of the photographs. The photo-
graphs of Test No. 8, Figure 14, also show a weak third shock which can be
ascribed to the same causes.

The stress profiles of Figures 8 and 9 do not explicitly show these
waves. This is probably due to the reasons stated earlier and in the case
of Test No. 8 also due to the fact that the gage was loaded side-on and the
stress waves took 0.8 microseconds to travel over the active gage length.
Nevertheless, information on representative stress levels and times were
obtained. Levels much higher than those measured were not in evidence and
would have been detected. Lower levels would have been suspect around such
an energetic process as shaped-charge jet penetration. It is believed that
strain-compensated stress gages are essential in making this kind of
measurement. Reliable measurements 3 to 4 microseconds after the arrival
of the stress wave would have been impossible without their use.

V. CONCLUSIONS

The following conclusions were drawn from the experience gained in
applying stress gage technology to the measurement of stress during shaped-
charge jet penetration in glass, and from the combined photographic and
stress results of this study.

27



First, the stress profiles measured were limited by both the mechani-
cal and electrical response of the instrumentation. Electrical response
could be most easily improved but would not materially enhance the measure-
ments unless better packaging or other type of protection for the stress
gages is devised.

Second, the stress measurements, with their shortcomings, were of
sufficient quality to indlcate stress levels in the immediate vicinity of a
penetrating jet. It should be pointed out that the placement of the stress
gages coincided with existing interfaces in the glass targets. The photo-
graphin results indicate that these interfaces influence the penetration by
initiating cracking before penetration occurs. Insertion of foil stress
gag-s in monolithic glass or ceramics would be impossible without creating
interfaces for nucleation of fracture, thereby, influencing the penetration
and the measurements.

As a ocrollary to the previous conclusion, and as stated earlier,
strain-compensated stress gages are essential to satisfactory measurements

in these kinds of materials.

Third, although higher stress levels than those measured in these
experiments must be present at the jet-glass penetration interface, they
will be difficult, if not impossible to measure with foil stress gages.
Studying this interaction area in more suitable materials such as metals,
where fracture does not constitute such a large part of the failure
mechanisms, is possible with these gages. Future progress in measuring
stress in glass or ceramics under shaped-cnarge attack will probably not
come from foil stress gage technology. This statement is probably just as
true for kinetic energy penetration in these materials.

Fourth, the information presented here can be used in analysis or
design considerations for armor or anti-armor applications. The stress
measurements can be used to verify analysis which can infer stress levels
in inaccessible locations in a target. The photographic results determined

some of the phenomenology of shaped-charge jet penetration in layered glass
by identifying both the location and temporal history of the material
failure.
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